기타/수학

Fermat's Last Theorem: n = 3: Step 2

바로이순간 2012. 2. 17. 15:02


http://fermatslasttheorem.blogspot.com/2005/05/fermats-last-theorem-n-3-step-2.html


Fermat's Last Theorem: n = 3: Step 2

Today's blog continues the proof that I started earlier. The full proof for Fermat's Last Theorem: n = 3 can be found in my previous blog.

Today, I will show the proof for this lemma:

Lemma: if p,q are coprime, p,q opposite parity, then gcd(2p,p2 + 3q2) = 1 or 3

(1) Assume that there is a prime f which divides both 2p and p2 + 3q2.

(2) We know that it can't be 2 since p2 + 3q2 is odd since p,q have opposite parity.

(3) Let's assume that f is greater than 3. So that there exist P,Q such that:
2p = fP, p2 + 3q2 = Qf

(4) Now, f isn't 2 so we know that 2 must divide P so there exists a value H that is half of Pand:
p = fH

(5) So combining the two equations, we get:
3q2 = Qf - p2 = Qf - f2H2 = f(Q - fH2)

(6) f doesn't divide 3 since it is greater than 3. So by Euclid's Lemma, it must divide q.

(7) But this contradicts p,q being coprime since it also divides so we reject our assumption.

QED